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Abstract. Some previous works have presented the data on wealth and income distributions in developed
countries and have found that the great majority of population is described by an exponential distribution,
which results in idea that the kinetic approach could be adequate to describe this empirical evidence.
The aim of our paper is to extend this framework by developing a systematic kinetic approach of the
socio-economic systems and to explain how linear laws, modelling correlations between macroeconomic
variables, may arise in this context. Firstly we construct the Boltzmann kinetic equation for an idealised
system composed by many individuals (workers, officers, business men, etc.), each of them getting a certain
income and spending money for their needs. To each individual a certain time variable amount of money
is associated – this meaning him/her phase space coordinate. In this way the exponential distribution
of money in a closed economy is explicitly found. The extension of this result, including states near the
equilibrium, give us the possibility to take into account the regular increase of the total amount of money,
according to the modern economic theories. The Kubo-Green-Onsager linear response theory leads us
to a set of linear equations between some macroeconomic variables. Finally, the validity of such laws is
discussed in relation with the time reversal symmetry and is tested empirically using some macroeconomic
time series.

PACS. 87.23.Ge Dynamics of social systems – 02.50.-r Probability theory, stochastic processes,
and statistics – 89.90.+n Other topics of general interest to physicists

1 Introduction

The use of concepts from statistical physics in the descrip-
tion of financial, economic and financial systems has al-
ready an ample history, defining the new fields of research
called econophysics [1] and sociophysics [2]. Indeed, dur-
ing the last decade, hundreds of papers and books have
been published to gain new insights into problems tradi-
tionally not associated with physics; at the same time,
concepts such as “scale invariance”, “critical point” or
“steady states” have already enriched the vocabulary of
many economists and sociologists. A lot of models taken
over physics emphasize one or more features of the com-
plex economic phenomena without pretension to an ex-
haustive picture. Note that the recent papers operate a
non-ambiguous distinction between the microeconomic-
financial and macroeconomic-social levels of description,
as well as between the microscopic (statistical) and macro-
scopic (phenomenological) physics. For example, the stock
market crashes cannot be treated in the same way as the
global inflation; the statistics of price fluctuations has lit-
tle to do with the statistics of unemployment, etc.
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Our paper focuses on the macroeconomic level of de-
scription of a socio-economic system. At this level money
plays an essential role, like the blood into a body. It is
not surprisingly that all classical (and topical) economic
theories allocate large spaces to the movement of money
(see e.g. [3]). The recent econophysics literature includes
also some contributions on this question: Donangelo and
Sneppen [4] modelled the evolution of money from unsuc-
cessful barter attempts; recently, this model was modified
by a deterministic instead of a probabilistic selection of
the most desired product as money [5]; Bak et al. [6] pro-
posed a dynamical many-body theory of money in which
the value of money is a “strategic variable” that is cho-
sen by the individual agents. The models cited above have
the support of some interesting numerical simulations but
their results have been less compared with the empirical
(statistical) data. Also, due to their simplicity of principle,
these models do not attain to the fundamentals of statis-
tical physics. A genuine kinetic approach of an economic
system is that proposed by Ausloos [7], which includes the
main features of a gas-kinetic theory: a phase space den-
sity, a Boltzmann kinetic equation which results in some
conservation equations; there is also a pressure and a tem-
perature (seen as the inverse of a relaxation time that is
considered the same for all agents). Since the approach is
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restricted to the stock market prices, it does not lead to
results in agreement with the empirical data. In particu-
lar, the Gaussian distribution of price fluctuations is not
confirmed empirically. It appears that the price movement
in the stock market space has little to do with the Boltz-
mann’s stosszahlansatz (molecular chaos), which cannot
explain some collective effects (e.g. the “herd” effect, the
influences between traders, etc.).

On the other hand, an empirical study by Montroll [8]
showed that, at macroeconomic scale, the prices of vari-
ous items follow a Gaussian distribution with a variance
that is approximately independent to the inflation rate
(the data taken over from annual Sears, Roebuck and Co.
catalogues refer to 1916, 1924–25 and 1974–75). Moreover,
the author found that for the great majority of population
the incomes follow also a Gaussian distribution, and ex-
plained these results by the maximization of an entropy
function for socio-technical systems. The recent works of
Dragulescu and Yakovenko [9,10] constitutes important
steps forward on this way, establishing the relation be-
tween the Boltzmann kinetic equation and the conserva-
tion of money in a closed economic system. By introducing
an effective temperature (equal to the average amount of
money per economic agent) they found the exponential
Boltzmann-Gibbs distribution of money (and of income,
for about 95% of population), in excellent agreement both
with the results of computer simulation and the fitted em-
pirical data [10].

In the framework of modern economic theories, which
restored the role of money in economic dynamics, we could
ask if the total amount of money M , is indeed conserved,
at least at short-time scales. The answer seems to be neg-
ative since the regular increase of the quantity of money
tends to the status of an economic law [11]. In fact, M
can be seen as an extensive variable like the energy in
physical systems, but its conservation appears as an ide-
alisation similar to the “isolated system” from physics.
Somehow similar situation we meet when we define the
concept of efficient market. A market is said to be effi-
cient if all the available information is instantly processed
when it reaches the market and it is immediately reflected
in a new value of prices of the assets traded. Although the
efficient market is an idealised system that only approxi-
mates real markets, this concept is useful in any attempt
to model the real markets behaviour. In the framework
of our model, the increase of M is in relation with other
variables intensive or extensive. Some of these variables
belong to the macroeconomic level (inflation, rate of inter-
est), other have a strong social character (un-employment,
income/money). Our goal is to find such relations in the
proximity of the equilibrium states.

As we have already shown, both Gaussian (Maxwell)
distributions and Boltzmann-Gibbs (exponential) distri-
butions have been identified in the studies of socio-
economic structure. The aim of our paper is to extend this
framework by developing a systematic kinetic approach
of the socio-economic systems and to explain how linear
laws, modelling correlations between macroeconomic vari-
ables, may arise in this context. In Section 2 we construct

the Boltzmann kinetic equation for an idealised system
composed by many individuals (workers, officers, business
men, etc.), each of them getting a certain income and
spending money for their needs. To each individual a cer-
tain time variable amount of money is associated – this
meaning him/her phase space coordinate [12]. In this way
the exponential distribution of money in a closed econ-
omy is explicitly found (Sect. 3). In the same section we
study also the variation of Gini coefficient (which mea-
sures the inequality of wealth distribution [13]) for some
East-European countries during the last years. The exten-
sion of these results, including states near the equilibrium,
give us the possibility to take into account the regular
increase of the total amount of money, according to the
modern economic theories. The Kubo-Green-Onsager lin-
ear response theory leads us to a set of linear equations
between some macroeconomic variables (Sect. 4). Finally,
the validity of such laws is discussed in relation with the
time reversal symmetry (Sect. 5) and is tested empirically
using some macroeconomic time series (Sect. 6). Here we
establish the correlations between the economic variables
seen as generalized forces or fluxes. The conclusions and
some possible extensions are discussed in Section 7.

2 The kinetic level of description

Our system consists in N individuals labeled by the in-
dex j(j = 1 . . .N). According with the model treated in
reference [9], we consider as an individual variable the
amount of money possessed by each individual (a quan-
tity positive semi-definite): mj ≥ 0 for any j = 1 . . .N . In
this way we can choose the relevant variables and to con-
struct the phase space for the space number density, ρ. As
macroscopic variables could be chosen the total amount of
money (M), the natural unemployment (U) i.e. the unem-
ployment corresponding to the abstention of inflation [11],
or any other quantities that are conserved at equilibrium.

Following the usual methods of statistical physics [12]
we can divide the phase space into small cellular volume
elements, each volume element having assigned an index
i = 1, 2, 3, The variables in the kinetic level of description
are the number of individuals Ni(t), which occupy the
volume elements. These occupancy numbers are extensive
variables since they are proportional to the size of the
volume element. They are also stochastic variables since
specification of the number of individuals in these volume
elements does not provide enough information to specify
deterministically which interactions (encounters) will
occur. As in reference [7] we consider that the binary
encounters dominate so that only two volume elements,
located at m and m1 are involved. At the end of the
interaction, each of these volume elements will contain
one less individual, while a new person will appear in
volume elements located at m′ and m′

1. If we consider
these volume elements to be infinitesimal, the extensive
property of the occupancy numbers can be used to
introduce the space number density ρ(m, t). Thus means
the number of individuals with coordinates in the range
[m, m + dm]. Since encounters are a binary process, to
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describe their effect it is necessary to know the density of
pairs of individuals in space ρ(2)(m, m1, t), the so-called
pair distribution function. Adopting the Boltzmann’s
assumption of stosszahlansatz we can write the pair
distribution function as a product:

ρ(2)(m, m1, t) = ρ(m, t)ρ(m1, t). (1)

Equations of this kind are frequently met in the study of
Markov processes. Furthermore, near stable steady states
it is usually possible to find a contracted description that
will be stationary, Gaussian and Markovian. The great ad-
vantage of this assumption is that it permits a description
of the average effect of interactions in terms of ρ, with-
out independently introducing ρ(2). Thus, the dynamics
of an encounter can be treated in the same fashion as the
dynamics of a molecular beam experiment, leading to the
kinetic equation:

∂ρ

∂t
=

∫
�
σT g[ρ′ρ′1 − ρρ1]dm1 · (2)

In equation (2) we neglect the non-dissipative flux in phase
space called streaming: even if no collisions occurred in the
time dt, all individuals at the point m would move to a
new spatial position (m+ṁdm). We take into account for
the r.h.s. of equation (2) only the source term, representing
the dissipative effect of encounters. We used the notations:
g = |m1 − m|, ρ = ρ(m, t), ρ′ = ρ(m′, t), ρ1 = ρ(m1, t),
ρ′1 = ρ(m′

1, t). In the framework of the classical theory,
the linear operator

�
σT is related to the differential scat-

tering cross section σ(Ω, g), where Ω is the solid angle:
�
σT [.] =

∫
dΩσ(Ω, g)[.].

Finally, it is easy to prove the H-theorem: defining
the H-function by:

H =
∫∫

ρ ln ρdm (3)

and following the usual way i.e. taking the time derivative
of H , making some changes of variables and adding the
equations, one get:

dH

dt
=

1
4

∫∫∫
�
σT gρ′ρ′1

×
[(

1 − ρρ1

ρ′ρ′1

)
ln

ρρ1

ρ′ρ′1

]
dmdm1 ≤ 0 (4)

with the equality holding for (and only for) ρ = ρ0 which
satisfies:

ρ0ρ0
1 = ρ′0ρ′01 · (5)

Note that the Boltzmann equation is non-linear and be-
cause it accounts fully for binary encounters, it is useful for
describing processes both near and far from equilibrium.

3 The equilibrium distribution of money

In this section we recover some results obtained already
in literature [8–10]. Taking the logarithm in equation (5)
it follows that only distribution which satisfy:

ln ρ0 + ln ρ0
1 = ln ρ′0 + ln ρ′01 (6)

correspond to a constant value of H . As the H-theorem
proves that H is a monotonically decreasing function
of time, we infer that the phase space density which
satisfies equation (6) is the asymptotic equilibrium
density function. In the absence of an external field, the
equilibrium phase space density will be independent of
position, and equation (6) can be write symbolically as:

Ξ(m) + Ξ(m1) = Ξ(m′) + Ξ(m′
1) · (7)

A function that satisfies the equality (7) is called a colli-
sional invariant. According with [9], in a closed economic
system (at least at short-time scales) the total amount
of money is conserved: money (the fiat) is not allowed
to be manufactured by regular economic agents but can
only be transferred. This is equivalent to the conservation
of energy.

The density functions that satisfy equation (7) have
the general form:

ρ0(mi) = C exp
(
−mi

T

)
(Boltzmann-Gibbs) (8)

where 〈〉 denotes a phase space average, and T is an effec-
tive temperature equal to the average amount of money
per economic agent.

A straightforward graphical interpretation of the Gini
coefficient is the Lorenz curve [13], which is the thick curve
in Figure 1. The horizontal axis plots the cumulative per-
centage of the population whose inequality is under con-
sideration, starting from the poorest and ending with the
richest. The vertical axis plots the cumulative percentage
of income (or expenditure) associated with the units on
the horizontal axis.

In the case of a completely egalitarian income distri-
bution in which the whole population has equal incomes,
the Lorenz curve would be the dashed straight 45-degree
line. When inequality exists, the poor population has a
proportionately lower share of income compared with the
rich population, and the Lorenz curve may look like the
above thick curve below the 45-degree line. As inequality
rises, so the thick curve moves towards the bottom right-
hand corner. The Gini coefficient is the area A between the
45-degree line and the Lorenz curve divided by 1/2, the
total area under the 45-degree line. The Gini coefficient
may be given as a proportion or percentage.

An interesting empirical aspect pointed out by
Dragulescu and Yakovenko [10] is that for the great major-
ity of population (≈ 95%) the distribution of individual
income follows an exponential law. The horizontal axis
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(a)

(b)

Fig. 1. (a) Lorenz curves. Solid lines: the straight 45-degree line (Lorenz curve in the case of a completely egalitarian income
distribution) and the Lorenz plot in the case of an exponential distribution. The Gini coefficient – the area between the two
solid lines divided by the total area under the 45-degree line – is 1/2 (50%). Dashed lines: the Lorenz plots for Romania (1991
– the circles; 1997 – the triangles). (b) The dynamical evolution of Gini coefficient for some East-European countries.

plots the cumulative fraction of the population with in-
come below r, X(r). The vertical axis plots the cumula-
tive fraction of income Y (r) associated with the units on
horizontal axis:

X(r) =
∫ r

0

ρ(r′)dr′; Y (r) =

∫ r

0 r′ρ(r′)dr′∫ ∞
0 r′ρ(r′)dr′

· (9)

The Gini coefficient is given by: G = 2
∫ 1

0
(X − Y )dX .

When the distribution is completely egalitarian G = 0.
If the society’s total income accrues to only one person,
leaving the rest with no income at all, then G = 1 (or
100%). For the exponential distribution G = 0.5. This is
in good agreement with the values: 0.64–0.68 for United
Kingdom and 0.47–0.56 for USA found by Dragulescu
and Yakovenko [10]. Note that our analysis refers only to
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(a)

(b)

Fig. 2. (a) Consumer price index (P ) versus unemployment (U) for Hungary. The empirical data were registered at UNSD
database [16] from 1996 to 2000. The values corresponding to 1996 (P = 382.8% for P = 100% in 1990; U = 500.6 thousands
persons aged 16–64) are considered equal to 1.00. Error bars are bootstrap 89% confidence intervals. (b) Rates of discount of
central banks (D) versus money supply (M) for Hungary. The empirical data were registered at UNSD database [16] from 1996
to 2000. The values corresponding to 1996 (D = 23.00% per annum; M = 1237.200 mill. forints) are considered equal to 1.00.
Error bars are bootstrap 93% confidence intervals.

the individual income, not for family (household) income.
The equilibrium value of Gini coefficient for the latter is
3/8 = 0.375, as opposed to 1/2 = 0.5 for the former.

An interesting evolution presents the Gini coefficient
for the East-European countries (the data are supplied
by [14]). During several years, G for the individual in-

come increased from 20.42 to 24.58 in Romania, from
24.32 to 30.27 in Poland and from 23.26 to 34.2 in Hun-
gary (Fig. 2). Even if these values are smaller then those
corresponding to developed countries, the general trend
of increasing is remarkable. It means an approach to
the value 0.5 corresponding to the exponential distribu-
tion that seems specific to the market economies based
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on encounters/competition between individuals/compa-
nies/shares. Thus, the rapid growth of G is explicable for
the countries in which, until the last decade of the 20th
century, the totalitarian regimes had minimized the role
of (fair) competition in economic development.

4 Near the equilibrium: the linear response
theory

A relationship between the Boltzmann’s kinetic descrip-
tion and Onsager’s linear thermo-dynamics can be seen if
we restrict attention to the kinetic equation (2) in a neigh-
bourhood of equilibrium. Although the kinetic equation is
non-linear, if we look only at small deviations around equi-
librium (in the absence of an external field) we can write:

ρ(m, t) = ρ0(m) + ∆ρ(m, t) (10)

where ∆ρ(x, v, t) is assumed to be a small change in phase
space density. Substituting equation (10) into equation (2)
and retaining only terms linear in ∆ρ, we obtain the lin-
earized kinetic equation:

∂

∂t
∆ρ =

∫
�
σT gρ0ρ0

1

[
∆ρ′

ρ′0
+

∆ρ′1
ρ′01

− ∆ρ

ρ0
− ∆ρ1

ρ0
1

]
dm1 ·

(11)

In fact, the integral term associates a new function of x
and v with the function ∆ρ(x, v, t). It is a linear functional
of ∆ρ which can be written symbolically as:

C[∆ρ] =
∫

�
σT gρ0ρ0

1

[
∆ρ′

ρ′0
+

∆ρ′1
ρ′01

− ∆ρ

ρ0
− ∆ρ1

ρ0
1

]
dm1 ·

(12)

Introducing the translation operators:

T (m, m1)ρ(m1) = ρ(m) T ′
1(m, m1)ρ(m1) = ρ(m′

1)

T ′(m, m1)ρ(m1) = ρ(m′) T1(m, m1)ρ(m1) = ρ(m1) ·
Equation (12) becomes:

C[∆ρ] =
∫

�
σT gρ0ρ0

1[T
′ + T ′

1 − T − T1]
∆ρ(m1, t)
ρ0(m1)

dm1

≡
∫

Θ(m, m1)
∆ρ(m1, t)
ρ0(m1)

dm1 · (13)

In order to complete the Onsager’s picture, we define the
entropy density in phase space:

s = −ρ ln ρ · (14)

The intensive variable conjugate to N(m) = ρdm is:

F (ρ) =
∂s

∂ρ
= −(ln ρ + 1)

and the local thermodynamic force in phase space around
equilibrium is given by:

X = F (ρ) − F (ρ0) = − ln
ρ

ρ0
∼= −∆ρ

ρ0
· (15)

Finally, introducing the operator:

L[X ] ≡ −
∫

Θ(m, m1)X1dm1 (16)

the linearized kinetic equation takes the form:

∂

∂t
(∆ρ) = L[X ] · (17)

Equation (17), of the kind of Liouville equation, signi-
fies at the same time the Onsager linear equation (or
“Onsager regression equation” [12]) at the kinetic level
of description.

Long time ago, economists have used the linear laws
in studying the correlations between the macroeconomic
variables. The arguments developed in this paragraph
could explain, once again, from a physical point of view,
both the successes and the failure of linear economic laws
for long-time scales. First, the linearization is possible only
in the proximity of equilibrium states; second, the kinetic
level of description holds only at short-time scales (e.g.
shorter than the time scale of economic cycles).

5 The money conservation and the time
reversal symmetry

Before to test the quasi-linear laws in the proximity of
equilibrium we have to remark that, in physics, the On-
sager symmetry relation L12 = L21 is derived from the
time reversal symmetry. It is naturally to ask whether
an economic system should have this property. In an-
swer, based on some previous results [9,10], we can con-
clude that:

• In a closed economy, the total amount of money is
conserved.

• At equilibrium, in developed countries, the money and
individual income distributions are exponential, of the
same kind with the Boltzmann-Gibbs distribution (8).

These empirical evidence lead to the non-trivial anal-
ogy between the amount of money and the energy of phys-
ical systems. On the other hand, let us remember that in
accordance with the Noether theorem, certain conserva-
tion laws are related to general properties of space and
time [15]. In particular, the energy conservation law is de-
rived from the time reversal symmetry. Thus, we expect
that this property to be also satisfied in economic equi-
librium systems. However, when the methods of a certain
field are applied to another field the question naturally
arises whether the results correspond to reality. The only
way to prove this kind of extrapolation is by analysing the
empirical data series; we aims to do it in the next section.
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So far we suggested that the Boltzmann gas picture
could be suitable to the description between individuals
or firms as the exponential distribution of money seems
to be specific to market economies. Certainly, the kinetic
approach is not the only suitable with this end in view:
as the linear response is a general property of any system
close to equilibrium, the linear laws (17) and the symme-
try of kinetic coefficients can be derived from the more
systematic framework of the linear response theory [16].

6 An empirical test of the linear laws
in the neighbourhood of equilibrium

In accordance with Onsager linear theory [17], in the
neighbourhood of equilibrium the generalized fluxes (rates
of extensive parameters) are linear functions on the gen-
eralized forces (gradients of intensive parameters). An in-
herent difficulty in the study of macro-economic systems is
related to the choice of the relevant variables for a reduced
description. As we have already mentioned, such relevant
(extensive) variable can be considered the total amount
of money, whose (annual) rate is measured through the
indicator called money supply, M . The money supply ta-
ble shows money and reserve money. Money relates to the
liabilities of the monetary system in currency and demand
deposits to the domestic private sector. Reserve money re-
lates to the liabilities of the monetary authorities in cur-
rency and demand deposits to deposit money banks and
the domestic private sector. Money supply is measured in
millions of national currency units end of period.

The choice of the intensive parameters is more diffi-
cult. We take into account that the most important clas-
sical economic schools (created by A. Walras, I. Fisher, A.
Marshall, A.C. Pigou) as well as M. Friedman and Chicago
economic school [18] claim that there is a close relation
between the amount of money and inflation. Instead of
the rate of inflation we consider the indicator called con-
sumer index price for all items, P , which can be taken as
an intensive parameter. The consumer price index num-
bers are designed to show changes over time in the general
level of prices of goods and services that a reference pop-
ulation acquire, use or pay for consumption. A consumer
price index is estimated as a series of summary measures of
the period-to-period proportional change in the prices of a
fixed set of consumer goods and services of constant quan-
tity and characteristics, acquired, used or paid for by the
reference population. Consumer price index is expressed
as percentage taking a certain annual value as reference.
In the database that we used P is taken as 100% for 1990.
The quantity of money depends also, in the short run, on
the rates of interests [11]. Because it is hard to evaluate
precisely this indicator at the scale of the whole economy,
we consider as generalized force only the rate of discount of
the central banks, D. Rates shown represent those rates at
which the central bank either discounts or makes advances
against eligible commercial paper and/or government se-
curities for commercial banks or brokers. Rates are given
as percentage per annum end of period.

Table 1. Correlation coefficients between the scaled values of:
money supply (M); unemployment (U); consumer price index
– all items (P ); rates of discount of central banks (D).

Hungary Switzerland Spain
P D P D P D

M 0.948 −0.983 0.816 −0.831 0.891 −0.917
U −0.841 0.970 −0.922 0.572 −0.959 0.797

On the other hand, there is a relation between inflation
and unemployment synthesized in the well-known Phillips
regression curve. It claims that decreasing inflation im-
plies linear increasing unemployment rate until a “nat-
ural” rate that corresponds to zero inflation. Although
subsequent studies showed that this assumption fails at
long-time scale (“the Gibson paradox”), recent works find
that it is valid in the short run, validating the thesis of
natural rate of unemployment [18]. Since the short-time
scale is the scale at which the kinetic approach holds we
choose as the second generalized flux the rate of unem-
ployment U . The series on unemployment statistics are
derived from labour force sample surveys or employment
office statistics. Generally, data represent the total num-
ber economically active in thousands and of economically
active persons wholly unemployed or temporarily laid off.

As a first step, we have introduced dimensionless quan-
tities M , P , D and U scaling the variables at their initial
values i.e. the values at the beginning of the period taken
into account (the values corresponding to 19961 are taken
equal to units – see figures legends). Thus, the Onsager
linear equations near to equilibrium can be written as:


M = L11P + L12D

U = L21P + L22D·
(18)

In order to prove these relations we use the data sup-
plied by United Nation Statistic Division [19] referring to
three European countries that belong to rather different
geographical areas: Hungary, Switzerland and Spain.

Table 1 includes the correlation coefficients of different
series of scaled variables, calculated as:

Cu,v = Cov(u, v)/σuσv

=

[
1
n

n∑
i=1

(ui − 〈u〉)(vi − 〈v〉)
]

/σuσv

where u = M , U ; v = P , D; σu, σv = the variances
of u and v. Note that the correlation coefficient satisfies:
−1 ≤ Cu,v ≤ 1. The next step was to identify pairs of val-
ues for which D = const., and pairs for which P = const.;
using these values, we obtained the phenomenological co-
efficients Lij (Tab. 2a and b). In Figures 2a, 3a and 4a we
have plotted the empirical Phillips curves P = P (U). The
correlation between M and D are emphasized through
the curves D = D(M), which we have plotted in Fig-
ures 2b, 3b and 4b.
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Table 2. (a) The empirical (gross) data used to calculate the phenomenological coefficients. The values marked by asterisk
in two neighbouring lines are considered approximately equal. (b) The scaled data and the phenomenological coefficients:
L11 = (∆M/∆P )D=ct.; L12 = (∆M/∆D)P=ct.; L21 = (∆U/∆P )D=ct.; L21 = (∆U/∆D)P=ct.. The initial data are enclosed in
Table 2a. The values corresponding to 1996 (respectively 1999 for the last four lines) are taken as units (see figures legends).
The errors of measurement correspond to error bars in Figures 2–4.

Country Year/Mounth Consumer Money Rates of Unemployement
Price Index Supply (mill. Discount (thousands
All terms of national (percentage persons aged
(1990=100) currency per annum) 16–64)

units)

Hungary 2000–05 617.7 2031.650 11.00*
2000–06 620.8 2080.550 11.00*
2000–04 614.4* 1997.590 12.00
2000–05 617.7* 2031.650 11.00
2000–05 617.7 11.00* 389.6
2000–07 627.8 11.00* 376.9
2000–04 614.4* 12.00 411.1
2000–05 617.7* 11.00 389.6

Switzerland 1996 117.8 128.177 1.00*
1997 118.3 139.776 1.00*

2000–08 121.1* 156.861 3.07
2000–10 121.5* 161.950 3.02
2000–10 121.5 3.02* 62.9
2000–12 191.1 3.03* 67.7
2000–01 120.4* 2.48 92.6
2000–05 120.8* 2.32 62.8

Spain 2000–06 145.9 58.348 4.27*
2000–07 146.7 59.159 4.30*
2000–07 146.7* 59.159 4.30
2000–08 147.4* 58.235 4.41
2000–08 147.4 4.41* 1487.6
2000–12 142.7 4.39* 1495.6

1998 138.3* 3.00 1889.5
1999 141.6* 2.72 1651.6

(a)

Country P M D U Lij

Hungary 1.613 1.642 0.47* L11 = 4.880 ± 0.536

1.621 1.681 0.47*
1.605* 1.614 0.52 L12 = −0.633 ± 0.069
1.613* 1.642 0.47
1.613 0.47* 0.778 L21 = −0.961 ± 0.105
1.640 0.47* 0.752
1.605* 0.52 0.821 L22 = 0.987 ± 0.108
1.613* 0.47 0.778

Switzerland 1.000 1.000 1.00* L11 = 21.319 ± 1.492
1.004 1.090 1.00*
1.028* 1.223 3.07 L12 = −0.794 ± 0.055
1.031* 1.263 3.02
1.031 3.02* 0.373 L21 = −1.397 ± 0.097
1.011 3.03* 0.401
1.022* 2.48 0.549 L22 = 0.845 ± 0.059
1.025 2.32 0.413

Spain 1.030 0.951 1.56* L11 = 2.339 ± 0.116
1.036 0.964 1.58*
1.036* 0.964 1.58 L12 = −0.372 ± 0.018
1.040* 0.969 1.62
1.040 1.62* 0.900 L21 = −0.146 ± 0.007
1.007 1.61* 0.905
0.970* 1.10 0.830 L22 = −0.015 ± 0.050
1.000* 1.00 0.725

(b)
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(a)

(b)

Fig. 3. (a) Consumer price index (P ) versus unemployment (U) for Switzerland. The empirical data were registered at UNSD
database [16] from 1996 to 2000. The values corresponding to 1996 (P = 117.8% for P = 100% in 1990; U = 168.6 thousands
persons aged 16–64) are considered equal to 1.00. Error bars are bootstrap 99.5% confidence intervals. (b) Rates of discount of
central banks (D) versus money supply (M) for Switzerland. The empirical data were registered at UNSD database [16] from
1996 to 2000. The values corresponding to 1996 (D = 1.00% per annum; M = 128.177 mill. francs) are considered equal to 1.00.
Error bars are bootstrap 93% confidence intervals.

First, let us examine the results included into Table 1.
A correlation coefficient greater than 0.8, as well as smaller
than −0.8, cannot be the product of hazard: it involves
a substratum, which emerges macroscopically as a linear
(or “quasi-linear”, taking into account the influence of the
random noise) dependence between variables. Then, it is
easy to observe that some of the basic requirements of

Onsager theory [17] are fulfilled:

L11L22 − L12L21 > 0; Ljj > 0, j = 1.2 · (19)

In checking the next requirement, namely the symme-
try of the matrix [L] one has to take into account that
the macroeconomic time series are too short and noisy.
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(a)

(b)

Fig. 4. (a) Consumer price index (P ) versus unemployment (U) for Spain. The empirical data were registered at UNSD
database [16] from 1996 to 2000. The values corresponding to 1996 (P = 117.8% for P = 100% in 1990; U = 168.6 thousands
persons aged 16–64) are considered equal to 1.00. Error bars are bootstrap 99.5% confidence intervals. (b) Rates of discount of
central banks (D) versus money supply (M) for Spain. The empirical data were registered at UNSD database [16] from May
2000 to November 2000. The values corresponding to 1999 (D = 2.72% per annum; M = 61.345 mill. pesetas) are considered
equal to 1.00. Error bars are bootstrap 95% confidence intervals.

Nevertheless, the minimum confidence interval for the lin-
ear relation between the plotted variables is 89%. The
maximum relative errors correspond to Hungary (11% –
Fig. 2a and 7% – Fig. 2b) while for the others series rela-
tive errors are less than 10% (0.5% – Fig. 3a; 7% – Fig. 3b;
1.1% – Fig. 4a and 5% – Fig. 4b). Unlike the correlations
and linear dependences, which are well fitted by empirical
data, the best estimations of the equality L12

∼= L21 are

affected by errors between 14% and 35%. These are related
by the influence of noise on the short data series processed.
Nonetheless, the accordance between the two kinetic coef-
ficients in regard of the sign and order of magnitude allow
us to conclude that the time-reversal symmetry seems to
be a property of economic systems close to equilibrium
as well as it actually happens for any conservative system
composed by many interacting agents.
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7 Concluding remarks

From long time ago, the Phillips curve has been a field
of encounter between various economic schools. Today,
most of them accept the quasi-linear dependence of infla-
tion on the unemployment in the short run i.e. at short-
time scales. Nonetheless, dependence such that plotted in
Figures 2a, 3a, and 4a does not hold for any country at
any time. Accordingly our working assumptions (Sect. 2),
the validity of linear laws indicates that the system runs in
the proximity of equilibrium. This condition as well as the
supposition of short-time scales justifies the use of kinetic
methods. In Sections 2–3 we found again, in an extended
framework, the exponential distribution of money/income
for the great majority of population. Assuming the sys-
tem in a stationary state, near the equilibrium (Sect. 4),
we can introduce into approach the regular increase of the
amount of money (4–5% annual) required by the modern
economic theories. As the total amount of money has the
basic properties of energy in physical systems, the sym-
metry of kinetic coefficients can be related to the time
reversal symmetry (Sect. 5).

The data analysed in Section 6 show that the quasi-
linear laws seem not to be universal laws. Although the
basically requirements of the Onsager theory are fulfilled,
there are great differences between the values of phe-
nomenological coefficients from a country to other. More-
over, it is possible that the relevant variables for a coun-
try are not relevant for another. Briefly, the choice of
the relevant variables for a reduced description of macro-
economic systems rests an open question. On the other
hand, the confirmation of the quasi- linear phenomenolog-
ical approach near the equilibrium could open some new
directions of research in econophysics: first, on the way
of non-equilibrium thermodynamics (e.g. the significance
of the production of entropy; the possible analogies with
the transport phenomena), second, on the way of non-
equilibrium statistics – the emergence of the bifurcation
points and limit cycles. We could ask if the last are in re-
lation with the economic cycles. The answer seems to be
affirmative, taking into consideration the fail of linear laws
at the end of an economic cycle. Obviously, the question
requires more investigation in future.
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